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ABSTRACT

v Th1s report entitled FLEXIBLE WING AIR CARGO GLIDER DELIVERY SYSTEM

} is a final summary report of a program conducted by the Ryan Aeronautical
Company, San Diego, California., The original document prepared at the com-
pletion of the program was Rya.n Report No. 63B109. The Contract Number was
DA 44-177-AMC-868(T) and this report is USATRECOM Technical Report 65-11
Unclassified, (equivalent of Ryan Report 64B120).

| The results of a flight test program utilizing a flexible wing air cargo delivery
vehicle are presented in this report. The objective of the program was to prove
the feasibility of this vehicle for the delivery of cargo in a logistic system. Dis- -
cussed are performance characteristics and handling gualities of both the towed
flexible wing and the tow helicopter. All flight testing was conducted at the U.S.

- Army Yuma Proving Grounds, Yuma, Arizona, beginning 1 December 1962 and
ending 23 July 1963.
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FOREWORD

The program covered by this report was conducted by the Ryan Aeronautical
Company under the provisions of contracts awarded by the U.S. Army Trans-
portation Research Command. Contract DA 44-177-TC-807 covered the design
phase and Contract DA 44-177-AMC-868(T) provided for fabrication and testing.

Initial phases of the concept study had been conducted under the provisions of
Contract DA 44-177-TC-779. Aerodynamic and stability and control data used
in the early design phase of this program were obtained from data accumulated
by the Langley Research Center, NASA.

Flight testing was conducted at U.S. Army Yuma Proving Grounds at Yuma,
Arizona beginning 1 December 1962 and concluding 23 July 1963. This report
is a summary of that detailed information of Ryan Report 63B109, (Final
Program Report) which was submitted at the completion of the program.
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% A
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Cc Coefficient

C.P. Center of Pressure

F Force
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S Wing Area
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q. Dynamic Pressure (1/2 pV2)
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B Sideslip Angle

n Semispan, Percent
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F.S.

W. L.

q

AN

AN
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Water Line Location -~ Inches
Dynamic Pressure - PSF

Wing Flat Plan Span, Feet

Wing Flat Plan Area - Square Feet
Wing Keel Length - Inches
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Negative in Sign if Measured to Point Aft of C.G. - Inches
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* The symbols used in the Dynamics Analysis section are explained
in the referenced report and are too lengthy to be repeated herein.
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SUMMARY

Towing an unmanned flexible wing vehicle is an unusual task. The task can be
made relatively simple if limitations are known and observed, as is true with
any flying machine.

As expected, the limiting factors of the on-tow flight envelope were lateral
directional (Dutch Roll) instability in the low speed regime, and tow cable in-
stability or tow vehicle/glider differential altitude in the high speed range.

The addition of a vertical surface to restrict Dutch Roll was required. Dutch
Roll was eventually reduced to a speed that did not compromise the flight
envelope.

Tow cable instability or pitch oscillations occurred during the early flights.

The original single point tow system was changed to the movable tow sling
attachment. The sling attachment not only allowed development of corrective
pitching moments to prevent Air Cargo Glider (ACG) pitch oscillations, but also
the vehicle/glider differential altitude changes were greatly reduced.

The total on-tow flight operation can be conducted with no control inputs; there-
fore, controls in the glider are not a requirement for the on-tow flights. How-
ever, control inputs can be made. Pitch-up or pitch-down inputs also evidence
an immediate response, and the reaction depends on the magnitude of the wing
change.

Tow-on landings require no control inputs to the glider, with an established
speed and wing setting.

Free flight control is responsive in roll, Inputs of 2° to 3° wing movement are
sufficient to produce turns and bank angles for control to a specified landing

area.

The Air Cargo Glider is shown in Figures 1 and 2 on page 5.




! CONCLUSIONS

! The main objective of this program was to prove the feasibility of the Flexible
Wing Air Cargo Logistic System for delivery of cargo. Thistwas accomplished,
as is evidenced by the attainment of all major contractual commitments. The
results of the flight test program indicate that not only is the Air Cargo Glider
feasible, but it also has demonstrated versatility in odd-geometry type cargo.
In addition to the conventional ACG fuselage, the skeleton-type fuselage and the
Strac-Pac type of cargo container were flown both on-tow and in free flight.

No adverse effects were noted on the handling qualities of the CH-34 helicopter
during tow, Standard helicopter takeoff procedure appeared acceptable as a
method for glider takeoff.

Flight safety is not a problem. No adverse effects were felt in the helicopter
upon a sudden release of the glider. Also, tow line damping prevents spring-
back of the cable and eliminates the danger of entanglement with the tail rotor.

The movable tow sling arrangement was proven to be a definite advantage over
the one-point, or track, arrangement. The sling attachment allowed develop-
ment of corrective pitching moments to prevent or dampen ACG pitch oscilla-
tions. Also, altitude changes between helicopter and ACG were greatly reduced.

"On-tow' landing with no control inputs became routine. No special techniques
in pilot training are required. Landings were made from 35 knots to 55 knots
with no change in landing procedures and no damage to the glider.




{ RECOMMENDATIONS

Considering the feasibility of the concept demonstrated in this program, the
major recommendation is an expanded follow-on program. ! Specific recom-
mendations based on the experience gained during this flight test program are:

1.

2.

6.

Revise and simplify the glider control system to augment reliability,

Revise the radio control system to prevent thermal instability and
spurious signal inputs.

Continue development testing to optimize the tow system and wing/body
relationships.

Determine the full-range operating envelope and tow requirements of a
finalized system.

Determine capability for a wide range of odd-geometry cargo delivery
utilizing a basic wing-platform unit.

Demonstrate compatibility for tow operations with selected vehicles
from the current U.S. Army inventory.

(5, s




DESCRIPTION OF THE AIR CARGO GLIDER

The glider described herein was designed to be towed from takeoff to landing by
rotary-wing aircraft without a requirement for external control inputs other
than those transmitted by the vectored forces induced by the towing cable. A
radio control system was installed on the glider to permit control or automatic
homing capability during a free flight mode.

GENERAL ARRANGEMENT

The Air Cargo Glider consists of a fabric-type, delta shaped wing assembly
supported by two strut assemblies: the forward variable length pitch strut as-
sembly and the aft tripod strut assembly. These strut assemblies are attached
to a control system platform that houses the electrohydraulic flight control sys-
tem. Flexible 3/16-inch-diameter steel cables connected to the output side of
the electrohydraulic control system connect to the wing spreader bar ends and
to the lower end of the variable length pitch strut cylinder.

The control system platform is attached to the rectangular box-shaped cargo
container. End cones are attached to the forward and aft ends of the cargo
container to reduce the aerodynamic drag. To facilitate loading and unloading,
full length doors are located on each side of the container.

A rolling gear is attached to the forward and aft lower ends of the cargo con-
tainer to facilitate ground handling and takeoff runs, Wooden skids with steel
wear strips attached to their undersides serve as the landing device after the
upward deflection of the rolling gear.

Figures 1 and 2 show the glider as originally designed and fabricated.

DIMENSIONS AND WEIGHTS

Keel and leading edge lengths ........... 226 inches
Leading edge sweepangle . ............. 50 degrees
Wing canopy area (flat pattern, 45° sweep). .. 256 square feet
Overall height (wing 9° from horizontal) .... 12.5 feet
Overall span ......0ccce0eeveeveees. 238feet
Wheelbase ...........00000000e... 96 inches
Wheel basewidth ................... 64inches
Empty weight ...........¢.c..0.... 842 pounds
Design gross weight ................. 1500 pounds




Figure 1. Air Cargo Glider - Side View

Figure 2. Air Cargo Glider - Left Front View




WING GROUP (See Figure 3)

The wing group consists primarily of right and left-hand membrane assemblies,
right and left-hand leading edge assemblies, keel assembly and a spreader bar
assembly.

WING SUPPORT GROUP

The wing support group consists of an aft tripod strut assembly, forward A-
frame strut assembly, and attaching hardware. The strut assemblies form the
connecting structure between the wing and the control platform and are capable
of supporting all loads on the wing.

CONTROL SYSTEM PLATFORM (See Figure 4)

The control system platform is suspended under the wing by the strut assem-
blies. The platform houses the hydraulic pitch and roll control components,
radio control subsystem, and the electrical system components. In addition,
the platform supports the upper assembly of the tow-cable attachment fixture.
Each of the above-mentioned subassemblies and the tow cable attachment fixture
shall be described in detail in later paragraphs herein.

CARGO CONTAINER (See Figures 5 and 6)

The cargo container is bolted at six points on the control system platform
through mated fittings. The container is a box-type structure approximately 49
inches wide by 96 inches long and 37 inches high (inside dimensions). The cargo
capacity is approximately 120 cubic feet, sized for a 1, 000-pound payload. To
facilitate loading and unloading, full length doors are installed on each side.
Brackets are attached to the forward and the aft lower cargo container struc-
tural tubes to provide mounting pads for the rolling gear. The cargo container
floor section contains a brake system to facilitate ground handling and to shorten
landing roll. Access panels are located in the floor to ease maintenance or re-
placement of the brake system components. Cargo tie-down fittings are pro-
vided on each side and at the center of the cargo floor.




Figure 3.

Figure 4.

Wing Assembly From Rear

Control Platform Layout




Figure 5, Cargo Container Door Installation

Figure 6. Cargo Container Front Assembly




ROLLING GEAR (See Figure 7)

The rolling gear is comprised of fore and aft independent right-and left-hand
wheel assemblies, shock absorber installations, and fore and aft leaf springs.
A brake system is installed on the rear wheel to provide ease in ground handling
and deceleration of the landing run. The wheels, tires, and axles are standard
automotive parts. The forward wheels are fully castered, and the rear wheels
are directionally fixed and contain mechanically actuated brakes. The braking
action is applied by spring action working through the brake cable system to the
brake drums. Brake release for takeoff is introduced by the tension on the tow
cable. This causes a pulley connected to the brake system, by a cable, to com~
press the brake spring, thus releasing the brakes. Under normal conditions,
the brakes will be applied at all times including takeoff and flight. How-

ever, a mechanical brake release is provided to allow manual brake release for
ground handling. The front and rear springs are identical and interchangeable.
Automotive-type shock absorbers are attached to the ends of the leaf springs.
The leaf springs and the shock absorbers together are capable of operating under
2g loads before bottoming out. The landing forces deflect the rolling gear up-
ward, and the landing energy is absorbed by the two landing skids attached to
the bottom of the cargo container.

LANDING GEAR

The landing gear consists of two wooden skids attached to the underside longi-
tudinal edges of the cargo container. Steel strips are attached to bottoms of
these skids to act as wear strips. This structure is designed to absorb the
landing impact after the rolling gear is deflected upward on touchdown.

FLIGHT CONTROL SYSTEM

The flight control system consists of a radio control subsystem, a tow cable at-
tach system, a helicopter tow cable system, and an electrohydraulic subsystem.

All basic components of the flight control system are installed in the control
system platform except for the following: a) wing variable length cylinder,

b) the flare switch and flare switch lanyard, c) the helicopter tow cable system,
and d) the external control cable lengths that attach to the wing.

Neutral positioning switches and wing pitch and roll limit switches are integrated
into the wing attitude control to permit remote control of the wing. These
switches are adjustable for individual mission requirements.




Figure 7. Right-Hand Forward Gear Assembly
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DESIGN CRITERIA AND LOADS

The structural design criteria and the vehicle loads which result from the design
flight and landing conditions are the subject of this section.

Although the towed glider is an unmanned, unpowered airplane of unusual con-
figuration, much of the design criteria philosophy of manned conventional air-
craft can be applied directly to this vehicle. This approach was used in deter-
mining the structural design criteria outlined in this section. Two notable
deviations from manned conventional aircraft are the reduction in the ultimate
factor of safety from 1.5 to 1.25 and the elimination of negative flight 1oad
factors.

Because of the large changes in geometry possible during flight (due to changes
in wing incidence), a somewhat unorthodox approach to the solution of the ve-
hicle flight loads was used. Primarily, this resulted in the wing angle of attack
seemingly becoming the independent variable, with all flight loads being refer-
enced to wing angle of attack., Each value of wing angle of attack, however, can
be directly correlated to a point on the V-n diagram envelope.

DESIGN CRITERIA

The structural design criteria for the vehicle are based on the conditions to be
incurred in operation. These requirements are generally in accordance with
the requirements of MIL-A-8860 (ASG) through MIL-A-8866 (ASG).

FLIGHT LOADING CONDITIONS

The vehicle shall be capable of sustaining the loads resulting from flight man-
euvers, including both towed and free flight conditions. The loads resulting
from the maneuvers shall be considered limit loads and shall be multiplied by a
factor of safety of 1.25 to obtain ultimate design loads. The design gross
weight is 1500 pounds,

The following design airspeeds were established:
VL - Limit Speed 140 knots

VH - Max. Level Speed 115 knots

11




VL - Max. Approach Speed 66.5 knots
F

VG - Design Gust Speed 101.5 knots
The symmetrical-flight maneuvering and vertical-gust load factor envelope is
shown in Figure 8. The envelope is defined by the limit maneuvering load factor
of 2.67 and the design gust conditions. The vertical-gust conditions result in
critical loading over most of the velocity range.

LANDING AND GROUND HANDLING LOADS

The design landing gross weight shall be 1500 pounds.

The landing gear (including wheels, springs, struts, and supporting structure)
shall be designed for a limit landing load factor of 2. 0 at the gear. Wing lift
may be considered equal to the weight.

The landing skids, body structure, wing structure, and wing support structure
shall be designed to the following ultimate load factors. acting separately. Wing
lift may be considered equal to the weight. Loads are to be reacted by inertia.

Vertical 10.0 down

Lateral 4.0

Longitudinal 6. 0 forward
CARGO INSTALLATION

The following loads are applicable for the design of cargo tie-down fittings and
their carry-through structure. The loads may be considered as ultimate and
act separately.

Vertical 10. 0 down
Lateral 4.0
Longitudinal 6.0 forward

Cargo flooring shall be capable of withstanding an ultimate design pressure of
3.5 psi acting locally.

12




LOADS ANALYSIS

Wing pressure data, from NACA TND-983, "Low Subsonic Pressure Distribu-
tions on Three Rigid Wings Simulating Para-gliders With Varied Canopy Curva-
ture and Leading-Edge Sweep'', has been analyzed to determine the wing airload
distribution. The reduced data have yielded the load distributions on the wing,
keel, and leading edges for symmetrical flight conditions.

GROSS WEIGHT = 1500 POUNDS

VERTICAL LOAD FACTOR - n
o

v
LF Va Y VL,
0 | | |
0 40 60 80 100 120 140

EQUIVALENT AIRSPEED - Ve (KNOTS)

Figure 8. Symmetrical Flight Maneuvering and Gust Envelope
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AERODYNAMICS

INTRODUCTION

The Flexible Wing Air Cargo Glider represents an unusual operational concept
for towed vehicles. Although much experience has been gained in towing manned
gliders and unmanned bodies of revolution, the tow aspects of an unmanned
glider were relatively unknown. The acceptable levels of on-tow dynamic sta-
bility for this type of vehicle are still to be determined. The flight test portion
of this program had as its partial goal the establishment of these limits. Only a
preliminary envelope was established.

The performance capabilities of the ACG, although important in the overall oper-
ational picture, was of secondary interest during the initial testing period. The
use of a CH-34 helicopter as a towing vehicle precluded operating with mar-
ginal on-tow performance.

ANALYSIS

The stability and control analysis of the ACG vehicle differs from that for con-
ventional aircraft in three major respects. Longitudinally, the available varia-
tion of wing to body incidence angle and the effect of wing drag on trim and static
stability constitute departures from the conventional, and must be considered in
the analysis calculations. In addition, the introduction of a variable external tow
force further modifies the basic force and moment equations.

The highly nonlinear trim equations dictated the choice of a numerical analysis
method as opposed to the more cumbersome and restrictive graphical method of
solution. An analytical method was developed which operates on individual com-
ponent data and combines them as dictated by the wing incidence angle. This
method provided for greater flexibility in evaluating the effects of geometric
changes such as wing location relative to body, center of gravity location, etc.

The longitudinal and lateral directional dynamic stability equations are premised
on the assumption of small perturbations from the trimmed position in space
(except for a longitudinal analog simulation, which is completely nonlinear).

Standard aircraft perturbation equations, modified by the inclusion of tow line

stability derivatives, were used. Roll control rates and deflection limits were
chosen as the result of a cursory investigation of the off-tow requirements.
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Longitudinal

The wing keel axes system was chosen as the reference for the longitudinal force
calculations. Pitching moments were referenced to the center of gravity.

The basic equations to be satisfied for static longitudinal equilibrium are:

ECN =0 (Forces normal to the keel)
ZC A 0 (Keel axial forces)
zC m= 0 (Pitching moments about the center of gravity)

(See Figures 19 and 20.)

Expanded, these equations become:

ch =0 = cN + cN -Cp. [cos(aw+'y)+ ANZ ] -T, sin(ozw— e)

ECA =0=C, +C, +C [sin(ozwﬂ’)—ANX] - T, cos(otw—e)

W B
—0= <Xa.c. > c +<Zc.grza._c> c <Fsaf.c._FSc.g;>C
NW CR A.VV CR ZB
WI"a c. .g. + + pSCR c +
Cx *Cm AW m, "Cmg \(E4Z)CyL
B 0 q
W W B
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where

and
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Y+WL

Figure 20. Pictorial Description of Body Terms (Aerodynamic)
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Longitudinal Dynamics

Standard longitudinal stick-fixed perturbation equations, as outlined in Refer-
ence 2 and modified to include tow line contributions, were used to determine the
longitudinal dynamic stability characteristics.

The modified equations are:

) = W+X -
d=X ut+X.w XQB +X5w 5, g(cos ‘)/0)0

5= +7.0 + + + : - i
w=Zu+Zo+z e (U0 ZQ)G +wa6w g(sm ‘)’0)0 *2,0

)

w

=M U+M.O+Mw+MO+M, 6 +M Z+M 0
u W w Q w Z 6

The tow line contribution terms and their definitions are:

qS
Z =— T
4 mCR ZZ
qS
Z =— T
6 m ZO
as
M =—T
Y/ IY MZ
v o Ber
oL M
where:
TZz =-TC cos G/(RT/CR)
1/2
(Ax)z (AZ>2
—_— + [ —
T =T cos€ Cr °r -
Z, C RT/C

24




T = o —
M, C, 'z,
AX
T, =-—— T
M z
s Cr

Lateral Directional Dynamics

Standard lateral directional stick-fixed perturbation equations as outlined in
Reference 2 plus the following side acceleration equation were used to determine

the on-tow lateral directional dynamic stability characteristics:
. . - o
Y fu G- afe),

which may be integrated to determine the sidewise displacement,

Y £ [(B+¢) dt

which in turn permits the inclusion of the side displacement effects in the three

standard equations. The modified equations become:

. . . . g ‘
= + + + 6 + 6 -y +2-
B YBB YP¢ YRI,D Y6A A YGR R Y “0 (cos ’Yo)¢

+Eg— (sin 7 )¥ + [YYY +Y,
(o]

¥ +Y¢¢]
Iz

b=LB+L G+L Y+L, 6 +L. 6 +-== 4
B'g P R 6A A GR R IX
*{LyT Ly L]
) . Ley ..
¢=NB+NP¢+NR¢+N6 6 +N6 6R+—I~—¢

A AA R Z

+ [NYY +N¢1,b +N¢¢]

25




The tow line contribution terms and their definitions are:

where:

Y, = (pSVO/2mCR)T '

YY
Ylp =(pSV0/2m)TYlp
Y¢ =(pSVo/2m)TY¢
B 2
Ly —(pSVO /2IX)T2Y,
_ 2
sz -—(psvo CR/ZIX)T’Zzp
_ 2
L, —(pSV CR/ZIX)T2¢
_ 2
Ny —(pSV CR/ZIX)TNY,
_ 2
sz —(pSV CR/zlz)Tsz
_ 2
N¢ -(pSV CR/2IZ)TN¢
Tyy' = - Te/(B1/CR)
[ [ax/c
Tsz = —TC 'RT/CR +cos €
" /aZ/C T
TY¢ =-TC RT/CR + sin €
L J
_(Az
Ty ”<CR> (TYY')
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DATA SOURCES

The aerodynamic data used as a basis for the determination of the flight charac-
teristics of the ACG were obtained, when possible, from NASA-conducted wind
tunnel tests. The aerodynamic characteristics of untested components (e. g.,
cargo body) were estimated using standard estimating techniques.

Longitudinal

The aerodynamic characteristics for the wing alone were obtained primarily
from NASA wind tunnel tests. Modifications to the original data, based on esti-
mates of spreader bar and leading edge fairings, were incorporated to reflect
the differences in wing configurations between the NASA wind tunnel model and
the ACG wing. Figure 21 presents wing lift and drag coefficients as functions
of angle of attack. A zero-lift drag buildup is given in Table 2.

Lateral Directional

The lateral directional stability analysis was based on the NASA wind-tunnel
data of the wing alone, presented in Figures 22 through 24. Estimates of body
and strut effects were added, assuming that the remote location of the wing
from the body would cause wing-body interference effects to be minor. Dynamic
derivatives were estimated from Reference 4 for each component of the
configuration,
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TABLE 2
DRAG BUILDUP (AERODYNAMIC)
<, S, ¢ ac

Item T £t2 £t2 0
Body .515 17.60 9. 06 . 0361
Struts .06 20.15 1.21 . 0048
Cables .96 .49 .47 .0019
Guide Cyl. .925 .559 .517 . 0020
Wheels .25 2.36 .59 . 0024
Pitch Rod .92 .1806 .166 .0007
Subtotal 12.01 . 0479
Wing 250. 8 15.55 . 0620
Total 27.56 .1099

e |

FLIGHT PREDICTIONS FOR ORIGINAL CONFIGURATION

The analysis indicates an influence of tow line length on lateral tow line oscilla-
tion. (See Figure 25.) Therefore, the predictions, both longitudinal and lateral
directional, are based on various cable lengths.

Sample flight test prediction plots for the first flight configuration are presented
in Figures 26 through 33.

Figures 26 and 27 present on-tow predictions for a fixed wing setting of 20° for
tow line lengths of 300, 600, and 1000 feet. Figure 28 shows the associated
helicopter-to-glider altitude variation for fixed-wing settings of 10°, 15°, 20°,
and 25° over the anticipated speed range, with a cable length of 300 feet.

Off-tow predictions are presented in Figures 29, 30, and 31. Based on these
predictions, a wing setting of 19° results in the maximum glide range at a speed
of 46-1/2 knots and a rate of descent of 1200 feet per minute. The longitudinal
and lateral directional stability for the glide phase are shown in Figures 29 and 30.
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An analog simulation was incorporated in the analysis to determine the release
and flare characteristics. Figures 31 through 34 present the results of this
study.

DEVELOPMENT OF FINAL CONFIGURATION

Initial on-tow flight tests of the Air Cargo Glider indicated the existence of
Dutch Roll instability throughout the towed speed range.

An analysis of the lateral directional dynamics was conducted to determine the
cause of this instability, after which appropriate modifications were developed
and subsequently incorporated on the glider to make it aerodynamically stable in
all modes.

This section contains the aerodynamic basis, method of analysis, and results of
the stability investigation. The modifications incorporated on the glider are
described. Flying qualities of the modified vehicle as observed from flight tests
are briefly discussed and summarized.

Technical Discussion

Before any re-analysis of the dynamic stability was attempted, a complete re-
view of the aerodynamic basis, both static and dynamic, was conducted.

s Yp

available for the original stability predictions were re-examined and were com-
pared with wind tunnel data made available since then. Correlation and evalua-
tion of all available data resulted in revising the estimates of wing static stability
to the values presented in Figure 35.

The wind tunnel measured values of the wing static stability (Cn s C CY
8

The dynamic derivatives were in turn re-calculated to reflect the revised esti-
mates of static stability. The methods used to calculate the required derivatives
of the complete aircraft about its center of gravity are presented below, where
subscriptsW, B, and S denote wing, body, and strut terms respectively.

1. C, =C +C +C
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cYp = cY,p /cL cL—ch, (zAC/b)
W W

B
C =-2C VAN
YpB YBB(B )
C =-2C Z /b
v, "0, ()

w B s
C, =C, - Cy (z e /b)
B B B K

W 5C W
c,zl3 =-cYB (ZB/b)
B B
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C =¢' + (¢!
n n C‘n /CL CL
Pw Pw Pw

(€ =0)

C, ~-2(Xph)(Zg)Cy
Pp Ay
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where

X_ = distance from C.G. to wing moment center, measured along the
X stability axis, negative in sign if wing moment-center is aft of
C.G.

Z_ . = distance from C.G. to wing moment center, measured along Z

stability axis, negative in sign when wing is above C.G.

Subscript .5 Cg refers term to keel midpoint.
Prime superscript refers term to wing aerodynamic center.

Estimates of the wing a. c. terms were obtained from the U.S. A. F. Stability and
Control Handbook (Reference 6). The calculated values for these terms based
on flatplan span are listed below: '

¢! /c. =.s18

I L
pw
' — e
csz =-,132
W
(CL"O)
' 2 _
c, /cL = -, 0334
p
c! = -.00145
®n
W
(€L70)
' — -—
c, /CL— .165. .432(XAC/b)
p
' 2 _
ch /cL = -, 058
w
' —
Cz /CL—.2396
Y
w
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The equations of motion which define the dynamics of the glider were pro-
grammed for the 704 digital computer. This program solves for the roots of the
aircraft's characteristic equation to provide the following information:

1. Damping ratio of Dutch Roll oscillatory mode.
2. Damping ratio of oscillatory tow line mode.

3. Time and cycles to one-half amplitude for Dutch Roll and tow line modes,
for on-tow conditions.

4, Time and cycles to one-half amplitude for Dutch.Roll, spiral, and roll
modes, for free flight conditions.

The defining equations of motion are presented and discussed on page 25.

The estimated Dutch Roll characteristics for the original configuration, based
on the modified aerodynamic basis, are presented in Figure 36, which shows
instability throughout the speed range as encountered during initial flight tests.

In addition to the data presented in Figure 36, the boundaries for neutral spiral
divergence and neutrally damped Dutch Roll were calculated and plotted in the
C " C o plane for a design condition of gliding flight at 50 knots. These

B B

boundaries are determined from the aircraft's characteristic equation, which
has the form AA% +BA3+CA2 +DA +E =0,
The conditions for neutral dynamic stability are:

E =0 (Spiral Boundary)

BCD - AD? + B%E = 0 (Dutch Roll Boundary)
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A complete description of the method of analysis can be found in Reference 3,
chapter 11.

Figure 37 shows an example of the stability boundaries calculated with the modi-
fied aerodynamic basis. The flight conditions are: gliding flight at 50 knots, at
a gross weight of 1100 pounds.

It was evident from plots of the stability boundaries that Dutch Roll stability
could be obtained by either increasing directional stability (C n )or by decreas-

ing dihedral effect (Cl )
B

A temporary solution to the Dutch Roll problem was obtained by increasing di-
rectional stability by means of three small vertical tails mounted on booms at-
tached to the fuselage. The flight test program was thus able to continue while
a more suitable permanent "fix" was being developed.

Flight tests of the modified glider, described above, demonstrated Dutch Roll
stability above a speed of approximately 45 knots. Figure 38 shows the Dutch
Roll limited minimum speeds as calculated with the modified aerodynamic basis.
Reasonable correlation with observed flight characteristics was demonstrated,
thus providing a quantitative check on the aerodynamic basis and method of
analysis.

Items investigated prior to selection of a final configuration included the following:

1. Widening of the aft wing-body strut to increase directional stability.

2. Vertical tails mounted on body.

3. A study of the effects of the glider's unconventional mass distribution;
i.e., large product of inertia, and moment of inertia about X axis greater
than moment of inertia about Z axis.

4. Relocating wing closer to body.

5. Vertical tail on keel.

6. Combinations of above.
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The first modifications considered in the analytical stability investigation were
the widening of the rear wing-body strut and the addition of two 12-square-foot
body mounted vertical tails to provide additional directional stability. These
modifications reduced the magnitude of instability but were not sufficiently
stabilizing to damp out Dutch Roll entirely.

As indicated by the negative damping ratio of Figure 39, the body mounted
vertical tails were relatively ineffective. This is due to the limited tail arm
available and because the lower portion of the tails operate in a region of sepa-
rated flow. Another disadvantage of body mounted tails is the obvious problem
of where and how to mount the vertical tail when the basic body is replaced with
a Strac~-Pac or by other odd shaped cargo.

Figure 40 illustrates the large effect that mass distribution can have on Dutch
Roll stability. I should be noted that the unstable damping ratio could be re-
duced substantially if the large positive product of inertial, I.,, could be re-
duced or eliminated. The data further indicate that the glider would in fact be
completely stable if I, could be made negative and large. Figure 40 thus
points out a good possibility for improving dynamic stability by reducing the
product of inertia.

One method of decreasing I, is to mount the wing closer to the body. Besides
reducing Ixz, this modification provides the additional benefits of also reducing
Cy B and I;. Figure 41 shows the stability boundaries and operating point for
the Air Cargo Glider with the wing set approximately 2 feet lower than that of
the original configuration.

Lowering the wing reduced the unstable damping ratio shown in Figure 37 by
approximately 44 percent. However, the glider is still unstable and requires
additional modification to achieve complete stability.

It should be mentioned here that as the wing is moved closer to the center of
gravity, the longitudinal static margin, Cyq. » becomes less stable, and
longitudinal stability thus becomes the limiting factor in lowering the wing.
Additional studies and a wind tunnel program are required to determine the
lowest practical wing position.

The final basic aerodynamic configuration consists of the wing, a keel mounted
vertical tail, wing-body struts, and a control platform. The wing is set
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approximately 2 feet closer to the control platform than is the wing of the
original configuration. The vertical tail area is 8.5 square feet.

The cargo package is not considered a part of the basic configuration since the
modified glider has been designed to carry any type of cargo that can be
strapped to the control platform, regardless of shape and as long as weight
limits are not exceeded.

Analysis of the dynamic stability characteristics of the modified glider indi-
cated that the configuration was dynamically stable throughout its speed range.

Figure 42 presents the stability boundaries for the final configuration at the
design condition of gliding flights at 50 knots.

Stability characteristics of the modified glider, as observed during flight tests,
can be summarized as follows:

1. Dutch Roll during tow is essentially nonexistent; thus minimum two speeds
are no longer Dutch Roll limited.

2. The high speed end of towed flight with the modified glider has not been
fully investigated; however, indications are that acceptable maximum

two speeds will be demonstrated.

3. The glider is statically and dynamically stable in all modes, in both
towed and gliding flight.

44




NOTE!
1. WING LOWERED APPROX. 2 FEET
2, NO VERTICAL TAIL
-3, GROSS WEIGHT =1100 LB.
4. GLIDING FLIGHT AT 50 KNOTS
6. STABLE

UNSTABLE

B

Cp.. PER RADIAN

LA |
}U)Z/OPE“ATING POINT=-,06

0 -.1 -2 -3 -4 -.5
C » PER RADIAN
Lg

Figure 41. Lateral Directional Stability Boundaries (Lower Wing)

NOTE3 )
1. FINAL CONFIGURATION
2, 8.6 FT2 VERTICAL TAIL ON KEEL
3. LOWERED WING
4. GROSS WEIGHT = 1100 LB.
6. GLIDING FLIGHT AT 60 KNOTS
6. _ STABLE

ACGC N
OPERATING &
POINT,

o1 V\b

UNSTABLE

Co g + PER RADIAN

0 =1 =2 =3 -4 -5 -6

Clﬂ » PER RADIAN

Figure 42. Lateral Directional Stability Boundaries (Final Configuration)
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GROUP WEIGHT STATEMENT

The following table summarizes the calculated weights of the major
subassemblies.

TABLE 3
WEIGHT AND MOMENT OF INERTIA SUMMARY

Horizontal Vertical
Weight Arm Moment Arm Moment
Item Pounds (in.) (in. -1b.) (in.) (in. ~1b.)
Wing Group (114. 64) (105.56) (12101)  (159.46) (18281)
Wing 19.23 119.65 2301 160. 69 3090
Keel 33.89 111.45 3777 156.51 5304
Leading Edge 37.10 80.19 2975 169. 86 6302
Spreader Bar 22,02 131.93 2905 143,87 3168
Ftgs. & Misc. 2.40 59,58 143 173.75 417
Strut Group (35.15) (86.94) (3056)  (107.11) (3765)
Aft Tripod 19.48 113.24 2206 100.98 1967
Fwd A Strut 15,67 54,24 850 114.74 1792
Body Group (197.39) (81.41) (16070) (23. 84) (4706)
Landing Gear Group (179.58) (81.55) (14644) (8. 66) (1556)
Controls Group (37.26) (80.01) (2981) (73. 81) (2750)
Pitch Control 21.36 64.09 1369 88.44 1889
Roll Control 15.90 101.38 1612 54.15 861
Platform Assembly (72.75) (83.38) (6066) (53.14) (3866)
Hydraulics Group (56. 69) (90.51) (5131) (53.18) (3015)
Electrical Group (64.11) (133.68) (8570) (33.97) (2178)
Totals, Empty (757.57) (90.58) (68619) (52.95) (40117)
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STRESS ANALYSIS

The detailed analysis has been omitted in favor of a table summarizing the
critical margins of safety as were determined in Ryan Report 63B109,
entitled Flexible Wing Air Cargo Delivery System, Final Program Report,
Volume I, dated 31 October 1963.
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GROUND: STRUCTURAL TESTS

The general scope of the test program was to evaluate and substantiate various
critical design areas of the Ryan Model 161 Paraglider Air Cargo Delivery
System under limit load conditions.

Tests were run statically on the tow cable system, leading edge and spreader
bar assembly, and spreader bar assembly.

Drop tests were run on the rear landing gear assembly and on the complete
vehicle without the wing.

The roll and pitch control systems were tested dynamically, and rates were
set.

The radio control system and pitch flare system were also functionally checked.

The following items required minor redesign to minimize deflections in certain
areas:

1. The pitch rack and pinion roller adjustment.

2. The roll control bellerank support beam.

3. The roll control actuator attach fitting.

4. Pitch and roll microswitch mounting bracketry.
5. Landing gear wheel spindle to spring fitting.

6. Rivets used in addition to bonding cement on side door stiffeners.
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FLIGHT TESTS

PROCEDURES

The test program proceeded in a logical sequence through a ground phase to

the flight operations. Ground tests began with truck tows of the body only,
proceeding to truck tows of the assembled wing and body. Helicopter downwash
checks were made with flybys in the static condition and with simulated takeoffs.
Tow cable lengths were varied, and the ground tests culminated with helicopter
tows of the glider along the runway.

A U.S. Army CH-34 helicopter performed as the tow vehicle on all flights.
Both UH~1A and OH-23 helicopters were used as chase aircraft. A chase air-
craft was used on all missions to perform a threefold function: (a) provide
flight safety; (b) provide a platform for air-to-air photographic coverage;

(c) provide an observer's station to record such data as tow cable depression
angle, tow arc carriage position, glider body angles, and CH~34/ACG altitude
separation. A flight deck crewman recorded CH-34 manifold pressure and tow
cable tension at specific test points during the flight.

A standard operating procedure was established that began with ground checkout
of the controller stations and tow cable functions. The airborne controller was
stationed in the tow vehicle facing aft to monitor the ACG throughout the flight.
The ground controller was stationed in a radio jeep with a voice link to the tow
vehicle pilot and the airborne controller. After the runway checkout, takeoff
was accomplished in accordance with a specified profile. ACG control through
the ground roll was handled by either controller, as required, to maintain run-
way alignment or to make wing pitch changes.

Takeoff was followed by climb out to the test altitude of a nominal 2,000-foot
mean sea level for on-tow flights. Level flight runs were made at various
airspeeds and wing settings to observe ACG flight characteristics and to deter-
mine flight envelope boundaries.

On-tow landings were handled by the ground controller via the radio link to the
tow vehicle pilot. Incremental altitudes above the terrain were given to the
pilot on final approach. The ACG '"cut" signal was given by the ground con-
troller just prior to glider touchdown.
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On free flights, the ground controller assumed radio control of the ACG just
prior to release from the tow vehicle. The pilot would count down to glider
launch at a predetermined offset point from a nominal 4,000-foot MSL,
approximately 3,500 feet above the terrain. The ground controller used radio
control inputs to obtain 360° turns, S-turns, etc., as required, to bring the
glider into a selected landing area. The chase vehicle circled down with the
glider to relay estimated altitudes in 500-foot increments as an aid to the
ground controller.

TEST RESULTS

A total of 54 Flight Test Operations (FTO) were accomplished, of which 13 were
ground operations and 41 were flights, including 8 free flights.

Ten complete vehicles were constructed for use on this program, -and these
were augmented by one rebuilt unit and a Strac-Pac unit from USATRECOM.
At the end of the program there were components remaining for five complete
wing-strut-control platform units and three bodies.

Table 5 presents a free flight summary, and an FTO log is shown in Table 6.

FREE FLIGHT

Free flight initially presented a problem in that there was no correlation
between the actual flight performance and predicted performance utilizing the
specified launch parameters. The ACG flew successfully after the C.G. was
moved aft approximately 12 inches from the original location to Fuselage
Station 99.

A total of eight free flights were attempted, of which six were successful.
The first attempt was unsuccessful and was made prior to aft movement of
the C.G. The other unsuccessful attempt was the first try with the lowered
wing in the Strac-Pac configuration. A contributing factor on both of these
unsuccessful flights was the inability to pitch the wind to a higher setting due
to radio troubles. A free flight summary is presented in Table 5.

Performance

The emphasis in this program was to obtain a flyable vehicle, and no specific
takeoff and landing performance was attempted. Although time could not be
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spent on optimizing techniques due to continuing configuration changes, some
improvements in performance were made as the program progressed.

Takeoff distances varied from initial requirements of 1,800 to 2,000 feet down
to 600 to 700 feet later in the program. Takeoffs were accomplished from
unprepared surfaces and in crosswinds of 6 to 8 knots,

Landings on-tow varied from 550 to 350 feet with nominal brakes compared to
900 to 1,000 feet without brakes. All landings were made on unprepared sur-
faces with both hard and soft textures. Free flight landings varied from a
70-foot ground roll with wing flare to a 380-foot ground roll without flare.
Landings were accomplished in crosswinds of from 8 to 10 knots.

Takeoff, climb, cruise, descent and landing were all accomplished with hy-
draulic power off; i.e., no control input capability to change wing pitch or roll
settings. The longest flight flown of 1 hour 12 minutes was made with hydraulic
power off throughout.

A Strac-Pac cargo configuration was flown twice, utilizing a takeoff dolly built
in the field. The dolly was merely a wooden flatbed mounted on four wheels;
the weight of the glider plus small sideboards kept it in place for the takeoff
run. No problems were encountered on either takeoff; the glider flew off the
bed and the dolly continued to roll out to a stop alongside the runway. This
concept of utilizing only a basic wing/control platform unit opens up numerous
possibilities for serial delivery of odd geometry cargo.

Flight Envelopes

As previously mentioned, the towed flight envelopes were limited by Dutch Roll
at low speed and by tow mode instability or differential altitude at high speed.
Several changes had only minor effects on the tow envelope; e.g., heavier tow
cable (40 pounds to 80 pounds), wing lowered and moved forward, 8° wing
dihedral, slab fin and bridle tow,

Moving the C.G. aft from fuselage station 86 to station 96 had no appreciable
effect, but an additional 3-inch movement aft to station 99 had a pronounced
effect on the tow envelope, ‘as shown in Figure 43. Tow cable tension was not
appreciably changed by the C.G. movement.
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Figure 43. Flight Envelope - C.G., Effect

Increasing the gross weight from 1300 to 1800 pounds had a negligible effect on
the high side of the envelope, but the greater depression angles appeared to
increase the speed for Dutch Roll onset. Tow cable tension was increased
approximately 200 pounds with the added weight. These effects are shown in
Figure 44,

Tow mode instability was evidenced in various forms. At times there was an
indicated buildup in lateral movement of the cable/ACG, and divergence could
be prevented by slowing down and/or reducing the wing angle. Other cases
exhibited catastrophic divergence with no apparent buildup, a 360° snap roll
occurring in one instance. These phenomena occurred at relatively flat tow
angles, and it appears possible that rotor wash may have had some input to the
resulting gyrations.

The "final" configuration (i.e., lowered wing, keel fin, and bridle tow) resulted

in envelopes as shown in Figure 45. There were only two envelope flights made,
and the comparison on the referenced plot includes both C.G. and gross weight
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effects. The lower envelope limit of Dutch Roll appears to have been elimi-
nated; however, some limiting values may be encountered at heavier gross
weights, based on previous experience.
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Figure 44. Gross Weight Effect - C,G. Fuselage Station 99
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Figure 45. Flight Envelopes ~ Final Configuration

Operational Notes

Towing an unmanned flexible wing vehicle can be a relatively simple task if
limitations are known and observed. Much remains to be tried and learned
before overall operating procedures can be specified. Some of the experience
gained to date is outlined below.

Flight preparation includes determination of gross weight and adjustment of

the C.G. to a desired location. These values are necessary to determine

wing settings and flight parameters. Figure 46 illustrates the flight parameters
for a complete mission utilizing only one wing setting for a given gross weight.
Some improvement in takeoff distances and cruise speeds can be obtained in
the medium to heavy gross weight ranges by using three different wing settings
for combined flight phases as shown in Figures 47, 48, and 49.

Ground checkout of the ACG control functions and tow cable release systems is
made as a standard checklist procedure prior to takeoff,
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Takeoff requires no special technique other than flying the tow vehicle to a
specified profile. No ACG control inputs are required, as the glider will track
on ground roll even with an offset start or in a crosswind. Climb out presents
no particular problem, and 500 feet per minute was used as a standard rate of
climb with the CH-34. As might be expected, the ACG trails at a lower relative
angle in climb, compared to level flight. At the top of the climb, the glider
smoothly assumes a level flight attitude.

In level flight, speed limits must be observed to prevent excessively small tow
depression angles with the attendant insufficient altitude separation. In atmos-
pheric turbulence, a slower tow speed is desirable to allow greater altitude
separation for damping of disturbances. The ACG was successfully flown in
thermals and turbulence of sufficient magnitude to affect the CH-34 flight path.
A total flight operation can be conducted without changing wing angles; however,
control inputs can be made. The glider will move out and assume a stable
offset position with a roll input. Response to the input is obvious and essen-
tially immediate. Pitch-down inputs also evidence an immediate response,

and the reaction depends on the magnitude of the wing change. Pitch-up inputs
have a response time delay of 2 to 3 seconds. After this momentary hesitation,
the glider climbs rather rapidly and rounds out at a higher trail position.
Pitch-up inputs must be used with discretion to maintain sufficient altitude
separation. In turns, the ACG tends to skid around the corner and ride up in
relation to the tow vehicle,

Descent requires a slower rate of change than climb due to the relatively higher
position of the glider in a downward path. A rate of descent of approximately
200 feet per minute was used with the CH-34. On-tow landings require noe ACG
inputs with an established speed and wing setting. The tow vehicle pilot can
easily fly the system on an altitude letdown on glider touchdown based on ter-
rain clearance estimates from a ground observer.

Free flight control is responsive in roll with a 2-to 3-second time delay. Roll
inputs of 2° to 3° wing movement are sufficient to produce moderate bank angles
that are acceptable for control. Some control lead is required due to the lag in
response. S-turns and 360° turns in either direction, as required, are easily
obtained. Control to a specified landing area is a matter of judgment based on
release offset, rate of descent and winds aloft. Turn maneuvers tend to in-
crease the rate of descent.

The ACG is surprisingly stable on landing rollout from either on-tow landings
or free flight touchdowns. No landing tip-~overs occurred through hard landings
in turns and crosswinds, including bounces and 90° heading changes.
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